ACT M1 Subject Test

Math Level 1 – Reference sheet

www.oneminuteperquestion.com

Equation of a line		
Standard form	Ax + By + C	 A, B, C are real numbers. A≥0 A and B are not both zero.
Slope- intercept form	y = mx + b	m = slope, b = y - intercept
Point -Slope form	$y - y_1 = m(x - x_1)$	
Slope	$y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$	(x_1, y_1) and (x_2, y_2) are 2 points
Quadratics		
Standard form of a quadratic equation	$ax^2 + bx + c = 0$	$a, b \ and \ c$ are constants where $a \neq 0$
Quadratic formula	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$::01
Coordinate Geometry	214	C. C.
Midpoint	$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	(x_1,y_1) and (x_2,y_2) are 2 points
Distance formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	0
Area, Volume, and Surf	ace Area of Polygon and	Solids
Triangle	$A = \frac{1}{2}bh$ $A = bh$	A = Area
Parallelogram	A = bh	b = base
Trapezoid	$A = \frac{1}{2}(b_1 + b_2)h$	h = height
Regular Polygon	$A = \frac{1}{2}ap$	a = apothom
Prism	V = Bh	p = Perimeter
Regular Prism	SA = 2B + Ph	V = Volume
Circular Cylinder	$V = \pi r^2 h$	$B = Area\ of\ base$
Right Circular Cylinder	$SA = 2\pi r^2 + 2\pi rh$	
Pyramid	$V = \frac{1}{3}Bh$	SA = Surface Area
Right Pyramid	$SA = B + \frac{1}{2}Pl$	P = Perimeter of base
Circular cone	$V = \frac{1}{3}\pi r^2 h$	r = radius
Right Circular Cone	$SA = \pi r^2 + \pi r l$	$l = slant\ height \ \pi = 3.142$
Sphere	$V = \frac{4}{3}\pi r^3$	n — 3.172
	$SA = 4\pi r^2$	

Angles of Polygon		
Sum of Degree Measures	180(n-2)	n = number of sides
of the interior Angles of a Polygon	100(n – 2)	II — Humber of sides
Degree Measures of an	180(n-2)	
interior Angle of a Regular Polygon	n	
Circles		
Circles		-0
Equation of a circle	$(x-h)^2 + (y-k)^2 = r^2$	center (h, k) $r = radius$
Area formula	$A = \pi r^2$	A = Area
Circumference Formula	$C = 2\pi r = \pi d$	C = circumference $d = diameter$
Area of a sector with central angle θ	$A = \frac{\theta}{360}\pi r^2$	$\pi = 3.142$
Right Triangles		(0)
Pythagorean Theorem	$a^2 + b^2 = c^2$	
Right Triangle Trigonometry	$\sin A = \frac{a}{c}$ $\cos A = \frac{b}{c}$ $\tan A = \frac{a}{b}$	Bacc
Samuanaa	b	C b A
Sequences		
Arithmetic Sequence	$a_n = a_1 + (n-1)d$	$a_n = n^{th} \ term$ $n = number \ of \ terms$ $d = common \ difference$
Geometric Sequence	$a_n = a_1 \times r^{(n-1)}$	$r = common\ ratio$
Interest		
Simple interest	I = Prt	r = rate
M.		t = time I = interest P = Principle
Compound Interest	$A = P\left(1 + \frac{r}{n}\right)^{nt}$	A = Amount of money after t years n = number of times interest is compund annually

Miscellaneous			
Distance, Rate, Time	D = rt	D = distance $r = rate$ $t = time$	
Direct Variation (y varies directly with x)	y = kx	k = variation constant	
Inverse Variation (y varies indirectly with x)	$y = \frac{k}{x}$		

Key to Symbols