EST II M1 Subject Test

Math Level 1 – Reference sheet

Equation of a line

Standard form	Ax + By + C	 A, B, C are real numbers.
		• A≥0 A and B are not both zero.
Slope- intercept form	y = mx + b	m = slope, b = y - intercept
Point -Slope form	$y - y_1 = m(x - x_1)$	
Slope	$m = \frac{y_2 - y_1}{}$	(x_1, y_1) and (x_2, y_2) are 2 points
	$x_2 - x_1$	

Quadratics

Standard form of a quadratic equation	$ax^2 + bx + c = 0$ $a, b \text{ and } c \text{ or } a \neq 0$	e constants where
Quadratic formula	$-b \pm \sqrt{b^2 - 4ac}$	
	2a	

Coordinate Geometry

Midpoint	$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	(x_1, y_1) and (x_2, y_2) are 2 points
Distance formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	

Area, Volume, and Surface Area of Polygon and Solids

Triangle	$A = \frac{1}{2}bh$	A = Area
Parallelogram	A = bh	b = base
Trapezoid	$A = \frac{1}{2}(b_1 + b_2)h$	h = height
Regular Polygon	$A = \frac{1}{2}ap$	a = apothom
Prism	V = Bh	n Davimatan
Regular Prism	SA = 2B + Ph	p = Perimeter
Circular Cylinder	$V = \pi r^2 h$	V = Volume
Right Circular Cylinder	$SA = 2\pi r^2 + 2\pi rh$	$B = Area \ of base$
Pyramid	$V = \frac{1}{3}Bh$	SA = Surface Area
Right Pyramid	$SA = B + \frac{1}{2}Pl$	

$$V = \frac{1}{3}\pi r^2 h$$

$$SA = \pi r^2 + \pi r l$$

$$V = \frac{4}{3}\pi r^3$$
$$SA = 4\pi r^2$$

$$P = Perimeter of base$$

$$r = radius$$

$$l = slant \ height$$

 $\pi = 3.142$

n = number of sides

Angles of Polygon

$$180(n-2)$$

$$180(n-2)$$

Circles

$$(x-h)^2 + (y-k)^2 = r^2$$

$$A = RI$$

$$C = 2\pi r = \pi d$$

Area of a sector with central angle
$$\theta$$

$$A = \frac{\theta}{360}\pi r^2$$

center
$$(h, k)$$

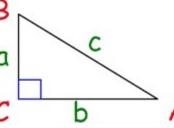
$$r = radius$$

$$A = Area$$

$$C = circumference$$

$$d = diameter$$

$$\pi = 3.142$$


Right Triangles

$$a^2 + b^2 = c^2$$

$$\sin A = \frac{a}{c}$$

$$\cos A = \frac{b}{c}$$

Sequences

$$a_n = a_1 + (n-1)d$$

$$a_n = a_1 \times r^{(n-1)}$$

$$a_n = n^{th}$$
 term
 $n = number \ of \ terms$
 $d = common \ difference$
 $r = common \ ratio$

Interest

Simple interest
$$I = Prt$$

$$t = time$$
 $I = interest$
 $P = Principle$

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

r = rate

Miscellaneous

Distance, Rate, Time D=rt D=distance r=rate t=time

Direct Variation y = kx

(y varies directly with x) k = variation constant

Inverse Variation (y varies indirectly with x) $y = \frac{k}{x}$

Key to Symbols

 ΔABC Triangle ABC

 $\angle ABC$ Angle ABC

m∠*ABC* measure of Angle ABC

 \overleftrightarrow{AB} Line AB

 \overline{AB} Line segment AB

AB length of line segment AB

Circle O Circle with centre O

 \widehat{AB} Arc AB

 \perp is perpendicular to

 $\parallel \cdots \ldots \ldots \ldots$ is parallel to

 $\cong \cdots \dots \dots \dots$ is congruent to

~ is similar to

≈ ··· is approximately equal