ACT II Subject Test

Math Level 2 – Reference sheet

www.oneminuteperquestion.com

Equation of a line		
Standard form	Ax + By + C	 A, B, C are real numbers. A ≥ 0 A and B are not both zero.
Slope- intercept form	y = mx + b	m = slope, b = y - intercept
Point -Slope form	$y - y_1 = m(x - x_1)$	
Slope	$y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$	(x_1, y_1) and (x_2, y_2) are 2 points
Quadratics		(9)
Standard form of a quadratic equation	$ax^2 + bx + c = 0$	$a, b \ and \ c$ are constants where $a \neq 0$
Quadratic formula	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	*/0,
Coordinate Geometry	C	5
Midpoint	$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	(x_1, y_1) and (x_2, y_2) are 2 points
Distance formula	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
Area, Volume, and Surf	ace Area of Polygon and Sol	ids
Triangle	$A = \frac{1}{2}bh$	A = Area
Parallelogram	A = bh	b = base
Trapezoid	$A = \frac{1}{2}(b_1 + b_2)h$	h = height
Regular Polygon	$A = \frac{1}{2}ap$	a = apothom
Prism	V = Bh	p = Perimeter
Regular Prism	SA = 2B + Ph	V = Volume
Circular Cylinder	$V = \pi r^2 h$	$B = Area\ of base$
Right Circular Cylinder	$SA = 2\pi r^2 + 2\pi rh$,
Pyramid	$V = \frac{1}{3}Bh$	SA = Surface Area
Right Pyramid	$SA = B + \frac{1}{2}Pl$	P = Perimeter of base
Circular cone	$V = \frac{1}{3}\pi r^2 h$	r = radius
Right Circular Cone	$SA = \pi r^2 + \pi r l$	$l=slant\ height \ \pi=3.142$
Sphere	$V = \frac{4}{3}\pi r^3$	л — 3.142
	$SA = 4\pi r^2$	

Angles of Polygon			
Sum of Degree Measur of the interior Angles o Polygon		n = number of sides	
Degree Measures of an interior Angle of a Regree Polygon			
Circles		~	
Equation of a circle	$(x-h)^2 + (y-k)^2 = r^2$	center (h, k)	
Area formula	$A = \pi r^2$	r = radius $A = Area$	
Circumference Formul	$C = 2\pi r = \pi d$	C = circumference	
Area of a sector with central angle θ	$A = \frac{\theta}{360}\pi r^2$	$d = diameter$ $\pi = 3.142$	
Parabolas		6	
Opening vertically	$y = a(x - h)^2 + k$	a = constant	
Axis of symmetry	x = h	(h,k) = vertex	
focus	(h	$\left(h,k+\frac{1}{4a}\right)$	
directrix	x	$=k-\frac{1}{4a}$	
Opening horizontally		$(y-k)^2 + h$	
Axis of symmetry	0	y = k	
focus	(h	$\left(h + \frac{1}{4a}, k\right)$	
directrix	y :	$y = h - \frac{1}{4a}$	
Ellipses			
Major Axis	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	a, b = positive constants	
Horizontal	a^2 $b^2 - 1$	where $a > b$	
Foci	$(h \pm c, k)$	$c = \sqrt{a^2 - b^2}$	
Major Axis Vertical	$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$	$A = Area$ $\pi = 3.142$	
Foci	$(h, k \pm c)$		
Area	$A = \pi a b$		

Hyperbolas

Transverse Axis	$(x-h)^2 (y-k)^2$
Horizontal	$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 1$
Foci	$(h \pm c, k)$
Transverse Axis	$(y-k)^2 (x-h)^2$
Horizontal	$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 1$
Foci	$(h, k \pm c)$

$$a, b = positive \ constants$$

$$where \ a > b$$

$$c = \sqrt{a^2 + b^2}$$

Right Triangles

Pythagorean Theorem	$a^2 + b^2 = c^2$
Right Triangle Trigonometry	$\sin A = \frac{a}{c}$ $\cos A = \frac{b}{c}$ $\tan A = \frac{a}{b}$
Law of Sines	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Law of Cosine	$c^2 = a^2 + b^2 - 2ab\cos C$
Area of a Triangle	$Area = \frac{1}{2}bc \sin A$ $= \sqrt{s(s-a)(s-b)(s-c)}$
C	

Sequences

Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Arithmetic Series	$S_n = \frac{n}{2} [2a_1 + (n-1)d]$ $S_n = \frac{n}{2} [a_1 + a_n]$
Geometric Sequence	$a_n = a_1 \times r^{(n-1)}$
Finite Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r} \text{ where } r \neq 1$
Infinite Geometric Series	$S = \frac{a_1}{1 - r} \text{ where } r < 1$

 $a_n = n^{th} term$ n = number of terms d = common difference r = common ratio $S_n = sum of the first n terms$ S = sum of all terms

Interest

Simple interest	I = Prt	r = rate $t = time$
Compound Interest	$A = P\left(1 + \frac{r}{n}\right)^{nt}$	I = interest P = Principle A = Amount of money after t years n = number of times interest is compound annually e = 2.718

Counting		
Combinations	$_{k}^{C}_{m}=C(k,m)=\frac{k!}{(k-m)!m!}$	$k = number \ of \ objects \ in \ a \ set$ $m = number \ of \ objects \ selected$
Permutations	$_{k}^{P}_{m} = P(k,m) = \frac{k!}{(k-m)!}$	
Exponential Grov	wth and Decay	
Periodic	$N_t = N_0 (1+r)^t$	$N_t = value \ at \ time \ t \ or \ after$ $t \ time \ period$
Continuous	$N_t = N_0 e^{rt}$	$r = rate\ of\ growth$ $t = time\ or\ number\ of$ $time\ periods$ $e = 2.718$
Polar Coordinate	s and Vectors	V 21/10
De Moivre's	$[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin\theta)$	r = radious, distance from
Theorem		the origin
		heta= angle measure in
		standard position
	2.0	n = exponent
Conversion: Polar	$x = r \cos \theta$	
to rectangular	$y = r \sin \theta$	
coordinates	~0.7	
Conversion:	$r = \sqrt{x^2 + y^2} ,$	
rectangular to	$\theta = \arctan \frac{y}{x}$ when $x > 0$	
Polar coordinates	$\theta = \pi + \arctan \frac{y}{x} \text{ when } x < 0$	
Product of	-67	I
Complex Numbers	$[r_1(\cos\theta_1+i\sin\theta_1)][r_2(\cos\theta_2+i\sin\theta_1)]$	$(1 + \theta_2)] = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$
in Polar Form	D.,	
Inner Product of Vectors in Plane	$\boldsymbol{a} + \boldsymbol{b} = a_1 b_1 + a_2 b_2$	$oldsymbol{a} = \langle a_1, a_2 \rangle$ vector in the plane
Inner Product of Vectors in Plane	$a + b = a_1b_1 + a_2b_2 + a_3b_3$	$a = \langle a_1, a_2, a_3 \rangle$ vector in space
Matrices	1	1
Determinant of a 2 >	× 2 Matrix det	$t\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$
Determinant of a 3 x	$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & j \end{bmatrix} = a \cdot det$	$\begin{bmatrix} e & f \\ h & j \end{bmatrix} - b \cdot det \begin{bmatrix} d & f \\ g & j \end{bmatrix} - c \cdot det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$
Inverse of a 2 × 2 Ma	$M^{-1} = \frac{1}{\det M} \begin{bmatrix} d & -1 \\ -c & -1 \end{bmatrix}$	$\begin{bmatrix} -b \\ a \end{bmatrix} \qquad \text{Where } M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Trigonometry			
Sum and difference identities			
$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha \sin\beta$			
$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$	$\beta = an$	gle measure in standard position	
$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$			
Double-Angle Identities	1		
$\sin 2\theta = 2 \sin \theta \cos \theta$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$	$\theta = ang$	heta= angle measure in standard position	
$\frac{\tan 2\theta - 1 - \tan^2 \theta}{1 - \tan^2 \theta}$ Half-Angle Identities			
		-l it l li.i	
$\sin\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos\alpha}{2}}$ $\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}$ $\tan\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} where \cos\alpha \neq -1$		lpha= angle measure in standard position	
Miscellaneous	VO.		
Distance, Rate, Time	D = rt	D = distance $r = rate$ $t = time$	
Direct Variation (y varies directly with x) Inverse Variation (y varies indirectly with x)	$y = kx$ $y = \frac{k}{x}$	k = variation constant	
Inverse Variation (y varies indirectly with x)			

Key to Symbols

Δ <i>ABC</i>	Triangle ABC
∠ <i>ABC</i>	Angle ABC
<i>m∠ABC</i>	measure of Angle ABC
\overleftrightarrow{AB}	Line AB
<i>AB</i>	Line segment AB
<i>AB</i>	length of line segment AF
<i>Circle 0</i>	
\widehat{AB}	Arc AB
⊥	is perpendicular to
	is parallel to
≅ ···	is congruent to
~	is similar to
≈	is approximately equal